Virginia Tech™home

Silke Hauf

Associate Professor
hauf
383 Bio complexity Institute (MC 0477)
1015 Life Science Circle
Blacksburg, VA
24061

The Hauf Lab Website

Major Field of Interest

Mechanisms of reliable cell division

 

  • M.D., University of Wuerzburg, Germany, 2000
  • Postdoctoral Fellow, Institute of Molecular Pathology (IMP), Vienna, Austria, 1999 - 2003
  • Postdoctoral Fellow, University of Tokyo, Japan, 2003 - 2005
  • Max Planck Research Group Leader, Friedrich Miescher Laboratory, Tuebingen, Germany, 2005 - 2013

2017 - Oustanding Research Award, Department of Biological Sciences, Virginia Tech

2006 - 2007:  Young Leaders in Science Program of the Schering Foundation

2004 - 2005:  Human Frontier Science program (HFSP) Long Term Fellowship

2004 : Research Fellowship of the German Research Foundation (DFG)

2000 - 2001:  Postdoctoral Fellowship of German Academic Exchange Service (DAAD)

1992 - 1999:  Scholarship of German National Academic Foundation (Studienstiftung; top 0.5% of German students)

Current Research

Cell division is a highly orchestrated process. Both daughter cells need to obtain a precise copy of the genetic information and of all other cellular material that they need to survive.  Thousands of proteins are involved in the process with hundreds being important regulators. We want to understand how such a complex event can be reliably executed, despite fluctuations in cellular composition ('noise') and variation in the cell environment.  We want to know whether cellular design principles resemble or differ from the principles that are implemented in man-made systems to achieve reliability.  Because cell division is so central to life, much of the regulation is preserved throughout evolution.  We use the unicellular eukaryote Schizosaccharomyces pombe (fission yeast) as a model organism and combine genetic techniques, advanced fluorescence microscopy, proteomics and computational modeling to explore the mechanisms of reliable cell division.

Selected Publications

Sewart K, Hauf S. Different Functionality of Cdc20 Binding Sites within the Mitotic Checkpoint Complex. Curr Biol. 2017;27(8):1213–1220.  https://www.ncbi.nlm.nih.gov/pubmed/28366743

Kamenz J, Hauf S. Time To Split Up: Dynamics of Chromosome Separation. Trends Cell Biol. 2017;27(1):42–54.  https://www.ncbi.nlm.nih.gov/pubmed/27567180

Kamenz J, Mihaljev T, Kubis A, Legewie S, Hauf S. Robust Ordering of Anaphase Events by Adaptive Thresholds and Competing Degradation Pathways. Mol Cell. 2015;60(3):446–459.  http://www.ncbi.nlm.nih.gov/pubmed/26527280

Heinrich S, Geissen EM, Kamenz J, et al. Determinants of robustness in spindle assembly checkpoint signalling. Nat Cell Biol. 2013;15:1328–1339.  http://www.ncbi.nlm.nih.gov/pubmed/241619

2017

Carpy A, Koch A, Bicho CC, et al. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-Based Quantitative Proteomics and Phosphoproteomics in Fission Yeast. Cold Spring Harb Protoc. 2017;2017(6):pdb prot091686.  https://www.ncbi.nlm.nih.gov/pubmed/28572185
Ciliberto A, Hauf S. Micromanaging checkpoint proteins. Elife. 2017;6.  https://www.ncbi.nlm.nih.gov/pubmed/28206949
Kamenz J, Hauf S. Time To Split Up: Dynamics of Chromosome Separation. Trends Cell Biol. 2017;27(1):42–54.  https://www.ncbi.nlm.nih.gov/pubmed/27567180
Koch A, Bicho CC, Borek WE, et al. Construction, Growth, and Harvesting of Fission Yeast Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Strains. Cold Spring Harb Protoc. 2017;2017(6):pdb prot091678.  https://www.ncbi.nlm.nih.gov/pubmed/28572184
Macek B, Carpy A, Koch A, et al. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Technology in Fission Yeast. Cold Spring Harb Protoc. 2017;2017(6):pdb top079814.  https://www.ncbi.nlm.nih.gov/pubmed/28572211
Sewart K, Hauf S. Different Functionality of Cdc20 Binding Sites within the Mitotic Checkpoint Complex. Curr Biol. 2017;27(8):1213–1220.  https://www.ncbi.nlm.nih.gov/pubmed/28366743

2016

Geissen EM, Hasenauer J, Heinrich S, Hauf S, Theis FJ, Radde N. MEMO – Multi-experiment mixture model analysis of censored data. Bioinformatics. 2016.  http://www.ncbi.nlm.nih.gov/pubmed/27153627

2015

Kamenz J, Mihaljev T, Kubis A, Legewie S, Hauf S. Robust Ordering of Anaphase Events by Adaptive Thresholds and Competing Degradation Pathways. Mol Cell. 2015;60(3):446–459.  http://www.ncbi.nlm.nih.gov/pubmed/26527280

2014

Carpy A, Krug K, Graf S, et al. Absolute proteome and phosphoproteome dynamics during the cell cycle of fission yeast. Mol Cell Proteomics. 2014;13(8):1925–36.  http://www.ncbi.nlm.nih.gov/pubmed/24763107
Heinrich S, Sewart K, Windecker H, et al. Mad1 contribution to spindle assembly checkpoint signalling goes beyond presenting Mad2 at kinetochores. EMBO Rep. 2014;15:291–298.  http://www.ncbi.nlm.nih.gov/pubmed/24477934
Kamenz J, Hauf S. Slow checkpoint activation kinetics as a safety device in anaphase. Curr Biol. 2014;24:646–651.  http://www.ncbi.nlm.nih.gov/pubmed/24583014

2013

Hauf S. The spindle assembly checkpoint: progress and persistent puzzles. Biochem Soc Trans. 2013;41:1755–1760.  http://www.ncbi.nlm.nih.gov/pubmed/24256287
Heinrich S, Geissen EM, Kamenz J, et al. Determinants of robustness in spindle assembly checkpoint signalling. Nat Cell Biol. 2013;15:1328–1339.  http://www.ncbi.nlm.nih.gov/pubmed/24161933

2012

Heinrich S, Windecker H, Hustedt N, Hauf S. Mph1 kinetochore localization is crucial and upstream in the hierarchy of spindle assembly checkpoint protein recruitment to kinetochores. J Cell Sci. 2012;125:4720–4727.  http://www.ncbi.nlm.nih.gov/pubmed/22825872
Koch A, Rode HB, Richters A, Rauh D, Hauf S. A chemical genetic approach for covalent inhibition of analogue-sensitive aurora kinase. ACS Chem Biol. 2012;7:723–731.  http://www.ncbi.nlm.nih.gov/pubmed/22264160

2011

Koch A, Krug K, Pengelley S, Macek B, Hauf S. Mitotic substrates of the kinase aurora with roles in chromatin regulation identified through quantitative phosphoproteomics of fission yeast. Sci Signal. 2011;4:rs6.  http://www.ncbi.nlm.nih.gov/pubmed/21712547
Sakuno T, Tanaka K, Hauf S, Watanabe Y. Repositioning of aurora B promoted by chiasmata ensures sister chromatid mono-orientation in meiosis I. Dev Cell. 2011;21:534–545.  http://www.ncbi.nlm.nih.gov/pubmed/21920317

2010

Koch A, Hauf S. Strategies for the identification of kinase substrates using analog-sensitive kinases. Eur J Cell Biol. 2010;89:184–193.  http://www.ncbi.nlm.nih.gov/pubmed/20061049

2009

Windecker H, Langegger M, Heinrich S, Hauf S. Bub1 and Bub3 promote the conversion from monopolar to bipolar chromosome attachment independently of shugoshin. EMBO Rep. 2009;10:1022–1028.  http://www.ncbi.nlm.nih.gov/pubmed/19680287

2008

Hauf S. Mps1 checks up on chromosome attachment. Cell. 2008;132:181–182.  http://www.ncbi.nlm.nih.gov/pubmed/18243093

2007

Hauf S, Biswas A, Langegger M, Kawashima SA, Tsukahara T, Watanabe Y. Aurora controls sister kinetochore mono-orientation and homolog bi-orientation in meiosis-I. Embo J. 2007;26:4475–4486.  http://www.ncbi.nlm.nih.gov/pubmed/17932486Kawashima SA, Tsukahara T, Langegger M, Hauf S, Kitajima TS, Watanabe Y. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev. 2007;21:420–435.  http://www.ncbi.nlm.nih.gov/pubmed/17322402

2005

Hauf S, Roitinger E, Koch B, Dittrich CM, Mechtler K, Peters JM. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol. 2005;3:e69.  http://www.ncbi.nlm.nih.gov/pubmed/15737063
Kitajima TS, Hauf S, Ohsugi M, Yamamoto T, Watanabe Y. Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr Biol. 2005;15:353–359.  http://www.ncbi.nlm.nih.gov/pubmed/15723797

2004

Gimenez-Abian JF, Sumara I, Hirota T, et al. Regulation of sister chromatid cohesion between chromosome arms. Curr Biol. 2004;14:1187–1193.  http://www.ncbi.nlm.nih.gov/pubmed/15242616
Hauf S, Watanabe Y. Kinetochore orientation in mitosis and meiosis. Cell. 2004;119:317–327.  http://www.ncbi.nlm.nih.gov/pubmed/15507205

2003

Hauf S. Fine tuning of kinetochore function by phosphorylation. Cell Cycle. 2003;2:228–229.  http://www.ncbi.nlm.nih.gov/pubmed/12734430
Hauf S, Cole RW, LaTerra S, et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol. 2003;161:281–294.  http://www.ncbi.nlm.nih.gov/pubmed/12707311

2001

Hauf S, Waizenegger IC, Peters JM. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science. 2001;293:1320–1323.  http://www.ncbi.nlm.nih.gov/pubmed/11509732

2000

Waizenegger IC, Hauf S, Meinke A, Peters JM. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell. 2000;103:399–410.  http://www.ncbi.nlm.nih.gov/pubmed/11081627

Spring 2018

Advanced Microscopy in the Life Sciences (BIOL5984, CRN 18881)

Fall 2018

Genetics (BIOL2004)