Virginia Tech™home

Shengfeng Cheng

Assoc Professor AY
Department of Physics,
115 Robeson Hall (MC 0435)
850 West Campus Drive
Blacksburg, VA 24061

Ph.D. : Johns Hopkins University

Our group is mainly interested in soft condensed matter systems, including both biological and synthetic polymers, nanoparticles, and nanocomposites. We use molecular dynamics simulations and theoretical models based on statistical mechanics to study phenomena including supramolecular/supramacromolecular self-assembly, nanoparticle self-assembly, evaporation, wetting, adhesion, friction, and crumpling phenomena. 

More details coming soon...

Self-assembly and biomechanics of microtubules and actin-filaments

Ion-containing polymers: in-solution complexes and solid-state membranes

Polymer/nanoparticle nanocomposites

Polymer/CNT/graphene nanocomposites

Evaporation of liquids and evaporation-induced self-assembly
Self-assembly of nanoparticles

Synthetic polymers: polyetherimides, polyacrylonitriles, polysulfones, polycarbonates

Crumpling of elastic sheets and wires

Bubble physics
Our research is sponsored by:

American Chemical Society Petroleum Research Fund
Jeffress Trust Awards Program in Interdisciplinary Research

The 4-VA Consortium @ Virginia Tech

  1. S. Cheng, M. J. Stevens, and G. S. Grest, Ordering nanoparticles with polymer brushes (to be submitted).
  2. C. R. Grosenick and S. Cheng, Self-assembly of artificial actin filaments (to be submitted).
  3. N. Argibay, M. Chandross, S. Cheng, and J. R. Michael, J. Mater. Sci. 52, 2780-2799 (2017), ­­­­­­­­­Linking microstructural evolution and macro-scale friction behavior in metals. [DOI] [Arxiv][PDF]
  4. S. Cheng and M. O. Robbins, Langmuir 32, 7788 (2016), Nanocapillary adhesion between parallel plates. [DOI] [Arxiv].
  5. S. Cheng and G. S. Grest, ACS Macro Letters 5, 694 (2016), Dispersing nanoparticles in a polymer film via solvent evaporation. [DOI] [Arxiv]
  6. M. Bachand, N. F. Bouxsein, S. Cheng, S. von Hoyningen-Huene, M. J. Stevens, and G. D. Bachand, RSC Advances 4, 54641 (2014), Directed self-assembly of 1D microtubule nano-arrays. [DOI]
  7. D. V. Gough, J. S. Wheeler, S. Cheng, M. J. Stevens, and E. D. Spoerke, Langmuir 30, 9201 (2014), Supramolecular assembly of asymmetric self-neutralizing amphiphilic peptide wedges. [DOI]
  8. S. Cheng and M. O. Robbins, Phys. Rev. E 89, 062402 (2014), Capillary adhesion at the nanometer scale. [DOI]  [Arxiv]
  9. S. Cheng and M. J. Stevens, Soft Matter 10, 510 (2014), Self-assembly of chiral tubules. [DOI] [Arxiv]
  10. D. Meng, S. K. Kumar, S. Cheng, and G. S. Grest, Soft Matter, 9, 5417 (2013), Simulating the miscibility of nanoparticles and polymer melts. [DOI]
  11. S. Cheng and G. S. Grest, J. Chem. Phys. 138, 064701 (2013), Molecular dynamics simulations of evaporation-induced nanoparticle assembly. [DOI] [Arxiv]
  12. S. Cheng and G. S. Grest, J. Chem. Phys. 136, 214702 (2012), Structure and diffusion of nanoparticle monolayers floating at liquid/vapor interfaces: A molecular dynamics study. [DOI] [Arxiv]
  13. S. Cheng, A.Aggarwal, and M. J. Stevens, Soft Matter 8, 5666 (2012), Self-assembly of artificial microtubules. [DOI] [Arxiv]
  14. P. M. McGuiggan, D. A. Grave, J. S. Wallace, S. Cheng, A. Prosperetti, and M. O. Robbins, Langmuir 27, 11966 (2011), Dynamics of a disturbed sessile drop measured by Atomic Force Microscopy. [DOI]
  15. S. Cheng, J. B. Lechman, S. J. Plimpton, and G. S. Grest, J. Chem. Phys. 134, 224704 (2011), Evaporation of Lennard-Jones fluids. [DOI] [Arxiv]
  16. P. Mellado, S. Cheng, and A. Concha, Phys. Rev. E 83, 036607 (2011), Mechanical response of a self-avoiding membrane: Fold collisions and the birth of conical singularities. [DOI] [Arxiv]
  17. S. Cheng and M. O. Robbins, Tribology Lett. 39, 329 (2010), Defining contact at the atomic scale. [DOI] [Arxiv]
  18. S. Cheng, B. Luan, and M. O. Robbins, Phys. Rev. E 81, 016102 (2010), Contact and friction of nanoasperities: Effects of adsorbed monolayers. [DOI] [Arxiv]
  19. S. Cheng and G. Jin, Eur. Phys. J. B 32, 291 (2003), Extended nature of coupled optical interface modes in Thue-Morse dielectric superlattices. [DOI]
  20. S. Cheng and G. Jin, Phys. Rev. B 65, 134206 (2002), Trace map and eigenstates of a Thue-Morse chain in a general model. [DOI]
  21. S. Cheng, G. Jin, R. Peng, and A. Hu, J. Phys. Soc. Jpn. 70, 2961 (2001), Coupled optical interface modes in a Thue-Morse dielectric superlattice. [DOI]


Spring 2018, PHYS 3704 Thermal Physics

Fall 2017, Polymer Physics

Fall 2017, Highlights of Contemporary Physics

Spring 2017, Statistical Mechanics

Fall 2016, Polymer Physics

Fall 2016, Highlights of Contemporary Physics

Spring 2016, Statistical Mechanics

Fall 2015, Polymer Physics

Spring 2015, Statistical Mechanics

Fall 2014, Polymer Physics

Spring 2014, Statistical Mechanics