Virginia Tech™home

Uwe C. Täuber

Professor
uwe2
Portraits of Virginia Tech College of Science faculty and staff
Dr. rer. nat, Professor
Director, Center for Soft Matter and Biological Physics
Department of Physics, Virginia Tech
Faculty of Health Sciences, Virginia Tech
Vice President, Virginia Tech Chapter AAUP
Fellow, American Physical Society
Department of Physics (MC 0435),
109 Robeson Hall
850 West Campus Drive, Blacksburg, VA 24061

Field of Research : Theoretical Condensed Matter Physics

Nonequilibrium Statistical Physics, Population Dynamics and Ecology, Cellular Biophysics, Soft/Bio Materials

 

Education

June 1999:          Dr.rer.nat.habil., TU Mu¨nchen (Germany)

July 1992:           Dr.rer.nat. (Ph.D.), mit Auszeichnung (with distinction), TU Mu¨nchen; Dissertation “Koexistenzanomalien in der Dynamik isotroper Systeme” (“Coexistence anomalies in the  dynamics  of  isotropic Systems”)

May 1988:          Diploma (M.S. degree) in physics,  Dipl.-Phys. (Univ.), mit Auszeichnung (with distinction), TU Mu¨nchen; Diploma thesis “Elastische Phasenu¨berg¨ange zweiter Ordnung in inhomogenen Medien” (“Second-order elastic phase  transitions  in  inhomogeneous  media”)

1982 – 1988:       Physics studies (Allgemeine Physik) at the TU Mu¨nchen

May 1982:           Abitur (premium grade average 1.0:  897 pts.  out   of 900)

1973 – 1982:       Gymnasium (high school) Bad Kissingen (Germany)

1969 – 1973:       Elementary school at G¨ottingen and Bad Kissingen

 

Academic Career

since 2016:          Director, Center for Soft Matter and  Biological Physics

since 2006:          Professor, Physics Department, Virginia Tech

2003 – 2006:      Associate Professor, Physics Department, Virginia Tech

1998 – 2003:       Assistant Professor, Physics Department, Virginia Tech

1997 – 1998:        Senior Scientist at the Institute for Theoretical  Physics, TU Mu¨nchen, funded by the Deutsche Forschungsge- meinschaft through a DFG Habilitation Fellowship

1995 – 1997:       Postdoctoral Research Associate at  Oxford University, Theoretical Physics (Prof. John L. Cardy); second year funded through a EC TMR Marie Curie  Fellowship

1993 – 1995:       Postdoctoral Research Fellow at Harvard University, Condensed Matter Theory (Prof. David R. Nelson); funded through a DFG Postdoctoral  Fellowship

1988 – 1993:       Research Assistant, Institute for  Theoretical Physics

1987 – 1988:       Diploma Student, Institute for  Theoretical Physics, TU Mu¨nchen (Prof.  Franz Schwabl)

1984 – 1987:       Research Student, Profs.  G. Kalvius, F. Schwabl,  TUM

 

Honors, Visiting Appointments, and Fellowships

since Nov.19:       Editorial Board of Symmetry

Nov. 2019:           Visiting Researcher, SISSA Trieste

Sep. 2019:            Visiting Researcher, Higgs Centre, University of Edinburgh

May–July 19:       Visiting Researcher, Universidade de Lisboa

since May 19:      Editorial Board of Journal of Physics A: Math. Theor.

May–Aug.18:       American Physical Society Lars Onsager Prize committee

since Jan.17:        Editorial Board of Physical Review E

June 2014:          Virginia Tech  Scholar of the Week  June   16-20, 2014

Nov. 2013:           Elected Fellow of the American Physical Society (APS)

July-Dec.12:        Visiting Researcher, Institut Syst`emes Complexes, Paris

Jan.  2008:          American Physical Society Outstanding Referee

since Dec.07:      Advisory Panel of J. Phys. A: Math. Theor.

July 2006:           Virginia Tech Scholar of the Week July 24-30, 2006

Oct.-Dec.05:         Senior Visiting Member, Linacre College, Oxford

Jun.-Sep.05:        CNRS Directeur de recherche associ´e at Laboratoire de Physique Th´eorique, Universit´e de Paris-Sud Orsay

1997 – 1998:       Habilitation Fellowship from the Deutsche Forschungs- gemeinschaft (DFG) & travel grant (DFG Ta    177/2-1,2)

1996 – 1997:       Junior  Research  Fellow,  Linacre  College, Oxford

1996 – 1997:       European  Comm.  Training  &  Mobility of Researchers Marie  Curie  Fellowship  (ERB FMBI-CT96-1189)

1993 – 1995:       DFG  Postdoctoral  Fellowship  (DFG  Ta  177/1–1,2)

1983 – 1988:       German National Scholarship from the Studienstiftungdes deutschen Volkes (to top 5% of German students)

1982 – 1988:       Bayerisches  Begabtenstipendium  (Bavaria scholarship)

Trajectory:

1982: Abitur, Gymnasium Bad Kissingen
1988: Dipl.-Phys., TU München
1992: Dr. rer. nat., TU München
1993-95: Postdoc at Harvard University, DFG postdoctoral fellow
1995-97: Postdoc at University of Oxford
1996-97: EU TMR Marie Curie fellow, JRF at Linacre College, Oxford
1997-98: Senior scientist, TU München, DFG habilitation fellow
1999: Dr. rer. nat. habil., TU München
1999-2003: Assistant professor, Virginia Polytechnic Institute and State University
2003-2006: Associate professor, Virginia Polytechnic Institute and State University
Summer 2005: CNRS research associate, University of Paris-Sud, Orsay
Fall 2005: Senior visiting member, Linacre College, Oxford University
Since 2006: Professor, Virginia Polytechnic Institute and State University
Summer/fall 2012: Sabbatical at Institut des Systemes Complexes - Paris Ile-de-France (ISC-PIF)
Nov. 2013: elected Fellow of the American Physical Society (APS)
Since Feb. 2016: Director, Center for Soft Matter and Biological Physics

Extended CV

Back to top

Research interests:

Structural phase transitions:
Influence of defects; dynamics; central peak
(Landau-Ginzburg theory of disordered systems; renormalization group).

Dynamic critical behavior near equilibrium phase transitions:
Universality classes; anomalies in the ordered phase of isotropic systems;
crossover behavior; stability against non-equilibrium perturbations
(Langevin equations; dynamic field theory; renormalization group).

Phase transitions and scaling in systems far from equilibrium:
Directed percolation; Burgers/Kardar-Parisi-Zhang equation;
branching and annihilating random walks; diffusion-limited reactions;
driven diffusive systems; driven-dissipative Bose-Einstein condensation
(master and Langevin equations; field theory; renormalization group;
Monte Carlo simulations).

NSF "nugget" (powerpoint): Reaction-controlled diffusion

DOE "highlight" (powerpoint): Non-equilibrium Relaxation and Critical Aging for Driven Ising Lattice Gases

Statistical mechanics of flux lines in superconductors:
Mapping to boson quantum mechanics; influence of correlated disorder;
properties of the Bose glass phase; vortex transport and flux pinning;
critical properties of the normal- to superconducting transition with disorder;
voltage and flux density noise; non-equilibrium relaxation and aging features
(path integral description; Monte Carlo and Langevin dynamics simulations).

DOE "highlight" (powerpoint): Magnetic Field Quench Effects on Vortex Relaxation Dynamics in Disordered Type-II Superconductors

Applications of statistical physics to biological problems:
Glassy properties of prokaryotic bacteria; receptor-ligand binding kinetics
on cell membranes; predator-prey population dynamics -> movies;
cyclic competition models in ecology; evolutionary population dynamics
(mean-field and Smoluchowski theory; field theory; Monte Carlo simulations).

NSF "nuggets" (powerpoint): Correlations in chemical reaction kinetics
Complex patterns and fluctuations in stochastic lattice models for predator-prey competition and coexistence
Stochastic lattice models for predator-prey coexistence and host-pathogen competition

My research has in the past been funded by the Deutsche Forschungsgemeinschaft,
the European Commission TMR program, the U.S. National Science Foundation,
the U.S. Army Research Office, and the Jeffress Memorial Trust.
Current funding through the U.S. Department of Energy, Office of Basic Energy
Sciences under grant no. DE-FG02-09ER46613 is gratefully acknowledged.

 

Back to top

 

PUBLICATION  LIST

[1]    W. Gasser and U.C.T., “Collective excitations of a layered electron gas in a strong magnetic field”, Z. Phys. B – Condensed Matter 69, 87 – 96 (1987).

[2]   W. Gasser and U.C.T., “Spin waves of a layered ferromagnetic electron gas and of a paramagnetic electron gas in a strong magnetic field”, Proceedings, ICM 88, International Conference on Magnetism, D. Givord (Ed.), Part II, J. Phys. (Paris) 49, C 8 — 1611 – 1612  (1988).

[3]    U.C.T.,  “Elastische  Phasenu¨berga¨nge  zweiter  Ordnung  in  inhomogenen  Medien”, Diplomarbeit, Technische Universita¨t Mu¨nchen (1988).

[4]   F. Schwabl and U.C.T., “Local condensation at elastic phase transitions”, Pro- ceedings, Phonons 89, 3rd International Conference on Phonon Physics and the 6th International Conference on Phonon Scattering in Condensed Matter, S. Hun- klinger, W. Ludwig, and G. Weiss (Eds.), Vol. 2 (World Scientific), 1138 – 1140 (1990).

[5]    F. Schwabl and U.C.T., “Elastic phase transitions in inhomogeneous media”, Phase Transitions 34, 69 – 103 (1991).

[6]   F. Schwabl and U.C.T., “Defect-induced condensation and central peak at struc- tural transitions”, Phys.  Rev.  B 43, 11 112 – 11 135    (1991).

[7]    U.C.T., “Koexistenzanomalien in der Dynamik isotroper Systeme”, Dissertation, Technische Universita¨t Mu¨nchen (1992).

[8]   U.C.T. and F. Schwabl, “Critical dynamics of the O(n)-symmetric relaxational models below the transition temperature”, Phys. Rev. B 46, 3337 – 3361 (1992).

[9]   U.C.T. and F. Schwabl, “Influence of cubic and dipolar anisotropies on the static and dynamic coexistence anomalies of the time-dependent Ginzburg–Landau mod- els”, Phys. Rev. B 48, 186 – 209 (1993) [cond-mat/9303044].

[10]    E. Frey, U.C.T., and F. Schwabl, “Crossover from self-similar to self-affine struc- tures in percolation”, Europhys. Lett. 26, 413 – 418 (1994) [cond-mat/9403093].

[11]     E. Frey, U.C.T., and F. Schwabl, “Crossover from isotropic to directed percola- tion”, Phys. Rev. E 49, 5058 – 5072 (1994) [cond-mat/9404004].

[12]    E. Frey and U.C.T., “Two-loop renormalization group analysis of the Burgers– Kardar–Parisi–Zhang equation”, Phys. Rev. E 50, 1024 – 1045 (1994) [cond- mat/9406068].

[13]    F. Schwabl and U.C.T., “Phase transitions: Renormalization and scaling”, in: “En- cyclopedia of Applied Physics”, G.L. Trigg  (Ed.), Vol.  13 (VCH Publishers), 343– 371 (1995).

[14]    U.C.T., H. Dai, D.R. Nelson, and C.M. Lieber, “Coulomb gap and correlated pinning in superconductors”, Phys. Rev. Lett. 74, 5132 – 5135 (1995) [cond- mat/9412021]

[15]     U.C.T. and E. Frey, “Reply to Comment on ‘Two-loop renormalization group anal- ysis of the Burgers–Kardar–Parisi–Zhang equation’ ”, Phys. Rev. E 51, 6319 – 6322 (1995).

[16]    U.C.T. and D.R. Nelson, “Interactions and pinning energies in the Bose glass phase of vortices in superconductors”, Phys. Rev. B 52, 16 106 – 16 124 (1995) [cond- mat/9505024].

[17]     F. Schwabl and U.C.T., “Continuous elastic phase transitions in pure and disor- dered crystals”, Phil. Trans. R. Soc. Lond. A 354, 2847 – 2873 (1996) [cond- mat/9607028].

[18]    E. Frey, U.C.T., and T. Hwa, “Mode-coupling and renormalization group results for the noisy Burgers equation”, Phys. Rev. E 53, 4424 – 4438 (1996) [cond- mat/9601049].

[19]    M. Bulenda, F. Schwabl, and U.C.T., “Defect-induced condensation and central peak at elastic phase transitions”, Phys. Rev. B 54, 6210 – 6221 (1996) [cond- mat/9606040].

[20]   U.C.T., “Localized flux lines and the Bose glass”, Proceedings, XIV Sitges Con- ference  “Complex  Behaviour  of  Glassy  Systems”,  M.  Rub´ı  and  C.  P´erez-Vicente (Eds.), (Springer), 298 – 307 (1997)  [cond-mat/9607109].

[21]    J.L. Cardy and U.C.T., “Theory of branching and annihilating random walks”, Phys. Rev. Lett. 77, 4780 – 4783 (1996) [cond-mat/9609151].

[22]    U.C.T. and D.R. Nelson, “Superfluid bosons and flux liquids: Disorder, thermal fluctuations, and finite-size effects”, Phys. Rep. 289, 157 – 233 (1997); Err.: Phys. Rep. 296, 337 – 338 (1998) [cond-mat/9608057].

[23]    U.C.T. and Z. R´acz, “Critical behavior of O(n)-symmetric systems with reversible mode-coupling terms: Stability against detailed-balance violation”, Phys. Rev. E 55, 4120 – 4136 (1997) [cond-mat/9610159].

[24]   C. Wengel and U.C.T., “Weakly pinned Bose glass vs Mott insulator phase in superconductors”, Phys. Rev. Lett. 78, 4845 – 4848 (1997) [cond-mat/9612093].

[25]    M.J. Howard and U.C.T., “ ‘Real’ versus ‘imaginary’ noise in diffusion-limited reactions”, J. Phys. A: Math. Gen. 30, 7721 – 7731 (1997) [cond-mat/9701069].

[26]   J.L. Cardy and U.C.T., “Field theory of branching and annihilating random walks”, J. Stat. Phys. 90, 1 – 56 (1998) [cond-mat/9704160].

[27]    U.C.T., M.J. Howard, and H. Hinrichsen, “Multicritical behavior in coupled di- rected percolation processes”, Phys. Rev. Lett. 80, 2165 – 2168 (1998) [cond- mat/9709057].

[28]   C. Wengel and U.C.T., “Properties of the Bose glass phase in irradiated super- conductors near the matching field”, Phys. Rev. B 58, 6565 – 6579 (1998) [cond- mat/9801264].

[29]   U.C.T., M.J. Howard, and H. Hinrichsen, “Reply to Comment on ‘Multicritical behavior in coupled directed percolation processes’ ”, Phys. Rev. Lett. 81, 2179 (1998).

[30]   E. Frey, U.C.T., and H.K. Janssen, “Scaling regimes and critical dimensions in the Kardar–Parisi–Zhang problem”, Europhys. Lett. 47, 14 – 20 (1999) [cond- mat/9807087].

[31]    U.C.T.,  J.E.  Santos,  and  Z.  Ra´cz,  “Non-equilibrium  critical  behavior  of  O(n)- symmetric systems: Effect of reversible mode-coupling terms and dynamical aniso- tropy”, Eur. Phys. J. B 7, 309 – 330 (1999); Err.: Eur. Phys. J. B 9, 567 – 568 (1999)   [cond-mat/9807207].

[32]    H.K. Janssen, U.C.T., and E. Frey, “Exact results for the Kardar–Parisi–Zhang equation with spatially correlated noise”, Eur. Phys. J. B 9, 491 – 511 (1999) [cond-mat/9808325].

[33]    Y.Y. Goldschmidt, H. Hinrichsen, M.J. Howard, and U.C.T., “Nonequilibrium critical behavior in unidirectionally coupled stochastic processes”, Phys. Rev. E 59, 6381 – 6408 (1999) [cond-mat/9809166].

[34]    B.A. Kaufmann, F. Schwabl, and U.C.T., “Critical dynamics at incommensurate phase transitions and NMR relaxation experiments”, Phys. Rev. B 59, 11 226 –  11 243 (1999) [cond-mat/9811167].

[35]    U.C.T.,  “Phasenu¨berga¨nge  und  Skalenverhalten  in  Nichtgleichgewichtssystemen”, Habilitationsschrift, Technische Universita¨t Mu¨nchen (1998).

[36]    M. Bulenda, U.C.T., and F. Schwabl, “Dimensional crossover in dipolar magnetic layers”, J. Phys. A: Math. Gen. 33, 1 – 21 (2000) [cond-mat/9907029].

[37]    B. Schmittmann, H.K. Janssen, U.C.T., R.K.P. Zia, K.-t. Leung, and J.L. Cardy, “Viability of competing field theories for the driven lattice gas”, Phys. Rev. E 61, 5977 – 5980 (2000) [cond-mat/9912286].

[38]   S. Trimper, U.C.T., and G.M. Schu¨tz, “Reaction-controlled diffusion”, Phys.  Rev. E 62, 6071 – 6077 (2000) [cond-mat/0001387].

[39]    T. Aspelmeier, J. Magnin, W. Graupner, and U.C.T., “Random walks with imper- fect trapping in the decoupled-ring approximation”, Eur. Phys. J. B 28, 441 – 450 (2002)  [cond-mat/0107434].

[40]   U.C.T., B. Schmittmann, and R.K.P. Zia, “Critical behaviour of driven bilayer systems: A field-theoretic renormalisation group study”, J. Phys. A: Math. Gen. 34, L583 – L589 (2001) [cond-mat/0108094].

[41]    U.C.T. and E. Frey, “Universality classes in the anisotropic Kardar-Parisi-Zhang model”, Europhys. Lett. 59, 655 – 661 (2002) [cond-mat/0108306].

[42]   U.C.T., V.K. Akkineni, and J.E. Santos, “Effects of violating detailed balance on critical dynamics”, Phys. Rev. Lett. 88, 045702 – 1-4 (2002) [cond-mat/0109433].

[43]    J.E. Santos and U.C.T., “Non-equilibrium behavior at a liquid-gas critical point”, Eur. Phys. J. B 28, 423 – 440 (2002) [cond-mat/0204195].

[44]   J. Das, T.J. Bullard, and U.C.T., “Vortex transport and voltage noise in disordered superconductors”, Proceedings, Statphys-Kolkata IV, International Conference on Statistical Physics, Physica A 318, 48 – 54 (2003) [cond-mat/0205023].

[45]    U.C.T., “Dynamic phase transitions in diffusion-limited reactions”, Proceedings, RG02,  5th  International  Conference  on  the  Renormalization  Group,  M.  Hnatiˇc,

V.B. Priezzhev, and D.V. Shirkov (Eds.), Acta Physica Slovaca 52, 505 – 513 (2002)  [cond-mat/0205327].

[46]   O. Deloubri`ere,  H.J. Hilhorst,  and U.C.T.,  “Multispecies  pair  annihilation  reac- tions”, Phys. Rev. Lett. 89, 250601 – 1-4 (2002) [cond-mat/0209471].

[47]    E. Shaw, D.R. Hill, N. Brittain, D.J. Wright, U.C.T., H. Marand, R.F. Helm, and

M. Potts, “Unusual water flux in the extracellular polysaccharide of the cyanobac- terium Nostoc commune”, Appl. Environ. Microbiol. 69, 5679 – 5684 (2003).

[48]   U.C.T., “Scale invariance and dynamic phase transitions in diffusion-limited reac- tions”, Proceedings, DPG (German Physical Society) Spring Meeting, “Advances in Solid State Physics”, B. Kramer (Ed.), Vol. 43 (Springer-Verlag Berlin), 659 – 675  (2003) [cond-mat/0304065].

[49]   T.J. Bullard, J. Das, and U.C.T. “Dynamics of magnetic flux lines in the presence of correlated disorder”, in: “Trends in Superconductivity Research”, P.S. Lewis (Ed.) (Nova Science Publishers), 63 – 72 (2004) [cond-mat/0305061].

[50]   B.A. Reid, U.C.T., and J.C. Brunson, “Reaction-controlled diffusion: Monte Carlo simulations”, Phys. Rev. E 68, 046121 – 1-19 (2003) [cond-mat/0306014].

[51]     M. Gopalakrishnan, K. Forsten-Williams, and U.C.T., “Ligand-induced coupling versus receptor pre-association: Cellular automaton simulations of FGF-2 binding”, J. Theor. Biol. 227, 239 – 251 (2004) [cond-mat/0308348].

[52]    V.K. Akkineni and U.C.T., “Nonequilibrium critical dynamics of the relaxational models C and D”, Phys. Rev. E 69, 036113 – 1-25 (2004) [cond-mat/0309562].

[53]    H.K. Janssen, F. van Wijland, O. Deloubri`ere, and U.C.T., “Pair contact process with diffusion:  Failure of master equation field theory”, Phys.  Rev.  E 70, 056114– 1-7 (2004) [cond-mat/0312463 withdrawn; cond-mat/0408064].

[54]    H.J.  Hilhorst,  O.  Deloubri`ere,  M.J.  Washenberger,  and  U.C.T.,  “Segregation  in diffusion-limited multispecies pair annihilation”, J. Phys. A: Math. Gen. 37, 7063– 7093 (2004)  [cond-mat/0403246].

[55]    M. Gopalakrishnan, K. Forsten-Williams, T.R. Cassino, L. Padro, T.E. Ryan, and U.C.T., “Ligand rebinding: Self-consistent mean-field theory and numerical simulations applied to surface plasmon resonance studies”, Eur. Biophys. J. 34, 943 – 958 (2005)  [q-bio.QM/0406004].

[56]    M. Gopalakrishnan, K. Forsten-Williams, M.A. Nugent, and U.C.T., “Effects of receptor clustering on ligand dissociation kinetics: Theory and simulations”, Bio- phys. J. 89, 3685 – 3700 (2005) [q-bio.SC/0407015].

[57]    H.J. Hilhorst, M.J. Washenberger, and U.C.T., “Symmetry and species segregation in diffusion-limited pair annihilation”, J. Stat. Mech. P10002 – 1-19 (2004) [cond- mat/0409079].

[58]   H.K. Janssen and U.C.T., “The field theory approach to percolation processes”, Ann. Phys. (NY) 315, 147 – 192 (2005) [cond-mat/0409670].

[59]    U.C.T., M.J. Howard, and B.P. Vollmayr-Lee, “Applications of field-theoretic renormalization group methods to reaction-diffusion problems”, J. Phys. A: Math. Gen. 38, R79 – R131 (2005) [cond-mat/0501678].

[60]   U.C.T.,  Book  Review  “Renormalization  Methods:   A  Guide  for  Beginners”, by W.D. McComb, Physics Today 58, 62 – 63 (2005).

[61]    M. Mobilia, I.T. Georgiev, and U.C.T., “Fluctuations and correlations in lattice models for predator-prey interaction”, Phys. Rev. E 73 (Rapid Communications), 040903(R) – 1-4 (2006) [q-bio.PE/0508043].

[62]   T.J. Bullard, J. Das, G.L. Daquila, and U.C.T., “Vortex washboard voltage noise in type-II superconductors”, Eur. Phys. J. B 65, 464 – 484 (2008) [cond-mat/ 0511509].

[63]    U.C.T., “Field theory approaches to nonequilibrium dynamics”, Proceedings, Sum- mer School “Ageing and the Glass Transition”, M. Henkel, M. Pleimling, and R. Sanctuary (Eds.), Lecture Notes in Physics 716 (Springer-Verlag Berlin, 2007), Chap. 7, 295 – 348 [cond-mat/0511743].

[64]   M. Mobilia, I.T. Georgiev, and U.C.T., “Phase transitions and spatio-temporal fluctuations in stochastic lattice Lotka–Volterra models”, Proceedings, Workshop on Applications of Methods of Stochastic Systems and Statistical Physics in Biology, J. Stat. Phys. 128, 447 – 483 (2007) [q-bio.PE/0512039].

[65]    M.J. Washenberger, M. Mobilia, and U.C.T., “Influence of local carrying capacity restrictions on stochastic predator-prey models”, J. Phys. Condens. Matter 19, 065139 – 1-14 (2007) [cond-mat/0606809].

[66]   M. Mobilia, I.T. Georgiev, and U.C.T., “Spatial stochastic predator-prey mod- els”, Banach Center Publ. 80, J. Miekisz (Ed.), Institute of Mathematics, Polish Academy of Sciences, Warsaw, 253 – 257 (2008)  [q-bio.PE/0609039].

[67]    V. Lecomte, U.C.T., and F. van Wijland, “Current distribution in systems with anomalous diffusion: renormalization group approach”, J. Phys. A: Math. Theor. 40, 1447 – 1465 (2007) [cond-mat/0611265].

[68]   U.C.T., “Field-theoretic methods”, in: “Encyclopedia of Complexity and System Science”, R.A. Meyers (Ed.), 3360 – 3374 (Springer-Verlag New York, 2009) [arXiv: 0707.0794].

[69]   U. Dobramysl and U.C.T., “Spatial variability enhances species fitness in stochastic predator-prey interactions”, Phys. Rev. Lett. 101, 258102 – 1-4 (2008) [arXiv: 0804.4127].

[70]    T. Klongcheongsan, T.J. Bullard, and U.C.T., “Nonequilibrium steady states of driven magnetic flux lines in disordered type-II superconductors”, Supercond. Sci. Technol.  23, 025023 – 1-13 (2010) [arXiv:0911.4066].

[71]     D. B¨auerle, B. Drossel, R. Folk, E. Frey, and U.C.T., “Nachruf auf Professor Franz Schwabl”, Physik Journal 9, 1 – 53 (2010); “Death Notice” no. 489 in: Physics To- day online (2010) [http://www.physicstoday.org/obits/notice 489.shtml].

[72]    Q. He, M. Mobilia, and U.C.T., “Spatial rock-paper-scissors models with inhomo-geneous reaction rates”, Phys. Rev. E 82, 051909 – 1-11 (2010) [arXiv:1004.5275].

[73]    M.T. Shimer, U.C.T., and M. Pleimling, “Nonequilibrium relaxation and scaling properties of the two-dimensional Coulomb glass in the aging regime”, EPL (Eu- rophys. Lett.) 91, 67005 – 1-6 (2010) [arXiv:1007.1929].

[74]    U.C.T., Book Review “A Modern Course in Statistical Physics”, by L.E. Reichl, J. Stat.  Phys.  141, 609 – 611 (2010).

[75]    Q. He, M. Mobilia, and U.C.T., “Coexistence in the two-dimensional May–Leonard model with random rates”, Eur. Phys. J. B 82, 97 – 105 (2011) [arXiv:1101.4963].

[76]    G.L. Daquila and U.C.T., “Slow relaxation and aging kinetics for the driven lattice gas”, Phys. Rev. E 83, 051107 – 1-11 (2011)  [arXiv:1102.2824].

[77]    U.C.T., “Stochastic population oscillations in spatial predator-prey models”, Pro- ceedings, CMDS-12, 12th International Symposium on Continuum Models and Dis- crete Systems, J. Phys.: Conf. Ser. 319, 012019 – 1-14 (2011) [arXiv:1105.4242].

[78]    M. Pleimling and U.C.T., “Relaxation and glassy dynamics in disordered type-II superconductors”, Phys. Rev. B 84, 174509 – 1-10 (2011) [arXiv:1106.1130].

[79]    Q. He, R.K.P. Zia, and U.C.T., “On the relationship between cyclic and hierarchi- cal three-species predator-prey systems and the two-species Lotka–Volterra model”, Eur.  Phys.  J. B 85, 141 – 1-13 (2012)  [arXiv:1111.1674].

[80]   U.C.T., “Renormalization group: Applications in statistical physics”, Proceedings, 49th International University Weeks for Theoretical Physics, “Physics at All Scales: The Renormalization Group”, Nucl. Phys. B Proc. Suppl. 228C, 7 – 34 (2012) [arXiv:1112.1375].

[81]    G.L. Daquila and U.C.T., “Nonequilibrium relaxation and critical aging for driven Ising lattice gases”, Phys. Rev. Lett. 108, 110602 – 1-5 (2012)  [arXiv:1112.1605].

[82]   U. Dobramysl and U.C.T., “Environmental versus demographic variability in two- species predator-prey models”, Phys. Rev. Lett. 110, 048105 – 1-5 (2013) [arXiv: 1206.0973].

[83]   U.C.T., “Population oscillations in spatial stochastic Lotka–Volterra models: A field-theoretic perturbational analysis”, J. Phys. A: Math. Theor. 45, 405002 – 1-34 (2012) [arXiv:1206.2303].

[84]   U. Dobramysl, H. Assi, M. Pleimling, and U.C.T., “Relaxation dynamics in type-II superconductors with point-like and correlated disorder”, Eur. Phys. J. B 86, 228– 1-15 (2013) [arXiv:1211.6929].

[85]   U.C.T., “Critical dynamics — A field theory approach to equilibrium and non- equilibrium scaling behavior”, 498 pages, Cambridge University Press (Cambridge, March 2014); ISBN 9780521842235.

[86]   U.Dobramysl and U.C.T., “Environmental versus demographic variability in stoch- astic predator-prey models”, Proceedings, STATPHYS 25, 25th IUPAP Interna- tional Conference on Statistical Physics, J. Stat. Mech. P10001 – 1-26 (2013) [arXiv:1307.4327].

[87]    U.C.T. and S. Diehl, “Perturbative field-theoretic renormalization group approach to driven-dissipative Bose–Einstein criticality”, Phys. Rev. X 4, 021010 – 1-21 (2014) [arXiv:1312.5182].

[88]   M.T. Shimer, U.C.T., and M. Pleimling, “Nonequilibrium relaxation and aging scaling of the Coulomb and Bose glass”, Phys. Rev. E 90, 032111 – 1-10 (2014) [arXiv:1403.6615].

[89]   U. Dobramysl, M. Pleimling, and U.C.T., “Pinning time statistics for vortex lines in disordered environments”, Phys. Rev. E 90, 062108 – 1-6 (2014) [arXiv:1405.7261].

[90]   L.M. Sieberer, A. Chiocchetta, A. Gambassi, U.C.T., and S. Diehl, “Thermody- namic equilibrium as a symmetry of the Schwinger–Keldysh action”, Phys. Rev.  B 92, 134307 – 1-22 (2015) [arXiv:1505.00912].

[91]    H. Assi, H. Chaturvedi, U. Dobramysl, M. Pleimling, and U.C.T., “Relaxation dynamics of vortex lines in disordered type-II superconductors following magnetic field and temperature quenches”, Phys. Rev. E 92, 052124 – 1-16 (2015) [arXiv: 1505.06240].

[92]   M. Pleimling and U.C.T., “Characterization of relaxation processes in interacting vortex matter through a time-dependent correlation length”, J. Stat. Mech. P09010– 1-12 (2015) [arXiv:1507.07283].

[93]    H. Assi, H. Chaturvedi, U. Dobramysl, M. Pleimling, and U.C.T., “Disordered vor- tex matter out of equilibrium: A Langevin molecular dynamics study”, Molecular Simulation 42, 1401 – 1409 (2016)  [arXiv:1509.02227].

[94]   S. Chen and U.C.T., “Non-equilibrium relaxation in a stochastic lattice Lotka– Volterra model”, Proceedings, 9th q-bio Conference, Phys. Biol. 13, 025005 – 1-11 (2016)  [arXiv:1511.05114].

[95]    U.C.T., “Phase transitions and scaling in systems far from equilibrium”, Annu. Rev. Condens. Matter Phys. 8, 14 – 1-26 (2017) [arXiv:1604.04487].

[96]   H. Assi, H. Chaturvedi, M. Pleimling, and U.C.T., “Structural relaxation and aging scaling in the Coulomb and Bose glass models”, Eur. Phys. J. B 89, 252 – 1-15 (2016) [arXiv:1606.02971].

[97]    H. Chaturvedi, H. Assi, U. Dobramysl, M. Pleimling, and U.C.T., “Flux line relax- ation kinetics following current quenches in disordered type-II superconductors”, J. Stat. Mech. 083301 – 1-16 (2016) [arXiv:1606.06100].

[98]   W. Liu and U.C.T., “Critical initial-slip scaling for the noisy complex Ginzburg– Landau equation”, J. Phys. A: Math. Theor. 49, 434001 – 1-17 (2016) [arXiv:1606. 08263].

[99]   J. Carroll, M. Raum, K. Forsten-Williams, and U.C.T., “Ligand-receptor binding kinetics in surface plasmon resonance cells: a Monte Carlo analysis”, Phys. Biol. 13, 066010 – 1-12 (2016) [arXiv:1606.08294].

[100]    S.R. Serrao and U.C.T., “A stochastic analysis of the spatially extended May–Leon- ard model”, J. Phys. A: Math. Theor. 50, 404005 – 1-16 (2017) [arXiv:1706.00309].

[101]     B. Heiba, S. Chen, and U.C.T., “Boundary effects on population dynamics in stochastic lattice Lotka–Volterra models”, to appear in Physica A (2017) [arXiv: 1706.02567].

[102]    U.S. Datla, W.H. Mather, S. Chen, I.W. Shoultz, U.C.T., C.N. Jones, and N.C. Butzin, “The spatiotemporal network dynamics of acquired resistance in an engi- neered microecology”, submitted to Scient. Rep. (2017).

[103]    U. Dobramysl, M. Mobilia, M. Pleimling, and U.C.T., “Stochastic population dy- namics in spatially extended predator-prey systems”, submitted to J. Phys. A: Math. Theor. (2017) [arXiv:1708.07055].

[104]    B.L. Brown, U.C.T., and M. Pleimling, “The effect of the Magnus force on skyrm- ion relaxation dynamics”, submitted to Phys.  Rev.  Lett. (2017).

[105]   H. Chaturvedi, N. Galliher, U. Dobramysl, M. Pleimling, and UCT, \Dynamical regimes of vortex flow in type-II superconductors with parallel twin bondaries", Eur. Phys. J. B 91, 294 { 1-13 (2018) [arXiv: 1710.03679].

[106]    S. Chen, U. Dobramysl, and U.C.T., “Evolutionary dynamics and competition stabilize three-species predator-prey communities”, Ecological Complexity 36, 57– 72 (2018) [arXiv:1711.05208].

[107]    P. Calabrese, P. Fendley, and U.C.T., “Preface: John Cardy’s scale-invariant jour- ney in low dimensions: a special issue for his 70th birthday”, J. Phys. A: Math. Theor. 51, 280301 – 1-4 (2018).

[108]   U.C.T., “Fluctuations and correlations in chemical reaction kinetics and population dynamics”, in: “Chemical kinetics — Beyond the textbook”, K. Lindenberg, R. Metzler, and G. Oshanin (Eds.), Chap. 1, 1–34 (World     Scientific Publ., Singapore, 2019) [arXiv:1807.01248].

[109]    J. Carroll, A. Warren, and U.C.T., “Effects of inhibitory and excitatory neurons on the dynamics and control of avalanching neural networks”, Phys. Rev. E 99, 052407 – 1-13 (2019) [arXiv:1809.01646].

[110]   R. Nandi and U.C.T., “Nonuniversal critical aging scaling in three-dimensional Heisenberg antiferromagnets”, Phys. Rev. B 99, 064417 – 1-6 (2019) [arXiv:1809. 07799].

[111]    B.L. Brown, U.C.T., and M. Pleimling, “Skyrmion relaxation dynamics in the presence of quenched disorder”, Phys. Rev. B 100, 024410 – 1-8 (2019) [arXiv:1906. 12146].

[112]   W. Liu and U.C.T., “Nucleation of spatiotemporal structures from defect turbu- lence in the two-dimensional complex Ginzburg–Landau equation”, Phys. Rev. E 100, 052210 – 1-15 (2019) [arXiv:1905.07317].

[113]   R.I. Mukhamadiarov, Priyanka, and U.C.T., “Transverse temperature interfaces in the Katz–Lebowitz–Spohn driven lattice gas”, Phys. Rev. E 100, 062122 – 1-13 (2019) [arXiv:1907.08576].

[114]  H. Chaturvedi, U. Dobramysl, M. Pleimling, and U.C.T., “Critical scaling and aging near the flux-line-depinning transition”, Phys. Rev. B 101, 024515 – 1-8 (2020) [arXiv:1907.05804].

[115]  W. Liu and U.C.T., “Aging phenomena in the two-dimensional complex Ginzburg– Landau equation”, EPL (Europhys. Lett.) 128, 30006 – 1-7 (2019) [arXiv:1910. 01168].

[116]   Priyanka, U.C.T., and M. Pleimling, “Feedback control of surface roughness in a one-dimensional Kardar–Parisi–Zhang growth process”, Phys. Rev. E 101, 002100– 1-8 (2020) [arXiv:1912.04789].

Spring 2018:

Statistical Mechanics (PHYS 5705) - Syllabus

Fall 2017:

(Introduction to) Biophysics (PHYS 4714 / 5714G) - Syllabus

Selected conferences, workshops, symposia, summer schools:

Luxembourg summer school "Ageing and the Glass Transitions", Luxemburg, September 2005:
Lecture notes Field theory approaches to nonequilibrium dynamics;
published in Springer Lecture Notes in Physics 716.

Isaac Newton Institute School
Non-equilibrium dynamics of interacting particle systems, Cambridge, U.K., March 27 - April 7, 2006:
Lecture notes Field-theoretic approaches to interacting particle systems.

97th Statistical Mechanics Conference, Rutgers University, May 6-8, 2007:
Invited talk Current distribution in driven diffusive systems.

Second annual French complex systems summer school,
Lyon and Paris, France, July 15 - August 10, 2008
Fluctuations and correlations in complex systems: An introduction to stochastic nonlinear dynamics.

2009 Boulder school for condensed matter and materials physics:
Nonequilibrium statistical mechanics - fundamental problems and applications,
Boulder, Colorado, USA, July 6 - 24, 2009.

EPSRC symposium workshop on non-equilibrium dynamics of spatially extended interacting particle systems (NEQ),
Warwick, U.K., January 11 - 13, 2010: Invited talk
Stochastic predator-prey models: population oscillations, spatial correlations, and the effect of randomized rates.

Model and data hierarchies for simulating and understanding climate: simulation hierarchies for climate modeling,
Institute for Pure and Applied Mathematics (IPAM), UCLA, Los Angeles, California, USA, May 3 - 7, 2010:
Invited talk (powerpoint) Stochastic fluctuations and emerging correlations in simple reaction-diffusion systems.

Continuum Models and Discrete Systems Symposium 12,
Centre for Applied Mathematics and Computational Science, Saha Institute of Nuclear Physics,
Kolkata, India, February 21 - 25, 2011: Invited talk (powerpoint)
Stochastic population oscillations in spatial predator-prey models.

49. Internationale Universitätswochen für Theoretische Physik,
Schladming, Austria, February 26 - March 5, 2011: Four lectures
Renormalization Group: Applications in Statistical Physics; lectures 1 & 2; lectures 3 & 4; lecture notes.

Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians University Munich,
Sommerfeld Theory Colloquium, December 12, 2012: slides; Nonequilibrium Relaxation and Aging Kinetics (Video).

STATPHYS 25, XXV IUPAP Conference on Statistical Physics, Seoul, South Korea, July 22 - 26, 2013:
Invited talk (powerpoint) Environmental vs. demographic variability in stochastic lattice predator-prey models;
see also invited talk at 2014 APS March Meeting, Denver, CO, March 3 - 7, 2014.

2nd Workshop on Statistical Physics, Bogota, Columbia, September 22 - 26, 2014: lecture slides.

Conference Renormalization Methods in Statistical Physics and Lattice Field Theories,
Montpellier, France, August 24 - 28, 2015:
Invited talk Critical dynamics in driven-dissipative Bose-Einstein condensation.

STATPHYS 26 Satellite Meeting, Non-Equilibrium Dynamics in Classical and Quantum Systems: From Quenches to Slow Relaxations,
Pont-\`a-Mousson, France, July 13, 2016: Invited talk Aging scaling in driven systems.

Physics Department Colloquium (powerpoint):
The 2016 Nobel prize in physics: Topological phase transitions and topological phases of matter

"Non-equilibrium relaxation of Driven topological defects", 83rd Annual SESAPS Meeting, Charlottesville, VA, November 2016.

"Non-equilibrium relaxation and aging scaling in driven systems",

  • 116th Statistical Mechanics Conference, Rutgers University, New Brunswick, NJ, December 2016:
  • Workshop "Nonequilibrium Dynamics: Diffusion, Poplulations and Aging", TIFR Centre for Theoretical Sciences (TCIS), Hyderabad (India), June 2017
  • Research Seminar, Bangalore School on Statistical Physics VIII, International Centre for Theoretical Sciences (ICTR) Bangalore (India), July 2017.

"Spatially extended stochastic rock-paper-scissors and May-Leonard models", SIA< Conference on Applications of Dynamical Systems (SIAM-DS19), Snowbird, UT May 2019.

"Non-equilibrium relaxation and critical aging of flux lines following current quenches",

  • 15th international Workshop on "Magnetism and Superconductivity at the Nanoscale", Coma-ruga (Spain), July 2019;
  • Discussion Meeting of the EPSRC NetworkPlus on Emergence and Physics Far From Equilibrium on "Horizons for Emergence and Non-Equilibrium Physics", King's College London (UK), September 2019;
  • 7th International Conference on Superconductivity and Magnetism (ICSM2020), Bodrum (Turkey), April 2020.
"Temperature interfaces in the Katz-Lebowitz-Spohn driven lattice gas", Workshop "The Many Facets of Non-Equilibrium Physics: From Many-Body Theory to Quantum Thermodynamics", Mazara del Vallo, Sicily (Italy), July 2019.

Back to top

Graduate textbook Critical Dynamics (Cambridge University Press, 2014)

Introducing a unified framework for describing and understanding complex interacting systems common in physics, chemistry, biology, ecology, and the social sciences, this comprehensive overview of dynamic critical phenomena covers the description of systems at thermal equilibrium, quantum systems, and non-equilibrium systems.

Powerful mathematical techniques for dealing with complex dynamic systems are carefully introduced, including field-theoretic tools and the perturbative dynamical renormalization group approach, rapidly building up a mathematical toolbox of relevant skills. Heuristic and qualitative arguments outlining the essential theory behind each type of system are introduced at the start of each chapter, alongside real-world numerical and experimental data, firmly linking new mathematical techniques to their practical applications. Each chapter is supported by carefully tailored problems for solution, and comprehensive suggestions for further reading, making this an excellent introduction to critical dynamics for graduate students and researchers across many disciplines within physical and life sciences.

List of contents:
Chap. 1: Equilibrium critical phenomena
Chap. 2: Stochastic dynamics
Chap. 3: Dynamic scaling
Chap. 4: Dynamic perturbation theory
Chap. 5: Dynamic renormalization group
Chap. 6: Hydrodynamic modes and reversible mode couplings
Chap. 7: Phase transitions in quantum systems
Chap. 8: Non-equilibrium critical dynamics
Chap. 9: Reaction-diffusion systems
Chap. 10: Active to absorbing state transitions
Chap. 11: Driven diffusive systems and growing interfaces
Corrections

 

Back to top