Virginia Tech® home

Hans Robinson

Assoc Professor AY
Department of Physics (MC 0435)
219 Robeson Hall,
850 West Campus Drive
Blacksburg, Virginia 24061

Field of Research: Experimental Condensed Matter Physics

Ph.D. : Boston University


Research Interests

Optical and quantum mechanical properties of metal and semiconductor nanostructures. Current projects include:


Fall 2009:  Foundations of Physics I (PHYS 2305)

                   Seminar for Physics Majors (PHYS 2325)

Spring 2010: Foundations of Physics I (PHYS 2305)

Fall 2010:   Teaching buyout

Spring 2011:  Teaching buyout

Fall 2011:  Foundations of Physics I (PHYS 2305)

Spring 2012:  Foundations of Physics I (PHYS 2305)

Fall 2012:   Foundations of Physics I (PHYS 2305)

Journal articles  

  • L. A. Neely, V. Kochergin, E. M. See, and H. D. Robinson, "Negative thermal expansion in a zirconium tungstate/epoxy composite at low temperatures," J. Mater. Sci. (2013). doi:10.1007/s10853-013-7716-8.
  • I. Kandas, B. Zhang, C. Daengngam, I. Ashry, C.-Y. Jao, B. Peng, S. K. Ozdemir, H. D. Robinson, and Y. Xu, "High quality factor silica microspheres functionalized with self-assembled nanomaterials," Opt. Express 21, 20601-20610 (2013). doi:10.1364/OE.21.020601.
  • C. Daengngam, S. B. Thorpe, X. Guo, S. V. Stoianov, W. L. Santos, J. R. Morris, and H. D. Robinson, "High Photoreactivity of o-Nitrobenzyl Ligands on Gold," J. Phys. Chem. C 117, 14165-14175 (2013). doi:10.1021/jp4019102.
  • S. V. Stoianov and H. D. Robinson, “Two-photon activated two-photon fluorescence and binding of azidocoumarin in a gelatin matrix,” J. Fluorescence 5, 1291-1300 (2012). doi:10.1007/s10895-012-1071-z.
  • L. A. Neely, E. See, H. D. Robinson, and V. Kochergin, “Systematic study of thermal expansion of Cu(II)O nano- and micro-particles and composites at cryogenic temperatures,” Phys. Stat. Sol. (b) 249, 1698-1703 (2012). doi:10.1002/pssb.201248121
  • S. V. Stoianov, C. Daengngam, M. Borhani, Y. Zhang, J. R. Morris, and H. D. Robinson, “Amine-rich polyelectrolyte multilayers for patterned surface fixation of nanostructures,” ACS Appl. Mater. Interfaces 4, 2348-2357 (2012). doi:10.1021/am300117f
  • I. Ashry, B. Zhang, S. V. Stoianov, J. R. Heflin, H. D. Robinson, and Y. Xu, “Probing the photonic density of states using layer-by-layer assembly,” Opt. Lett. 37, 1835-1837 (2012). doi:10.1364/OL.37.001835
  • J. Yi, C.-Y. Jao, I. L. N. Kandas, B. Liu, Y. Xu, and H. D. Robinson, “Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres,” Appl. Phys. Lett. 100, 105107 (2012). doi:0.1063/1.3701730
  • V. Kochergin, L. Neely, C.-Y. Jao, and H. D. Robinson, "Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices", Appl. Phys. Lett. 98, 133305 (2011). Selected for Vir. J. Nanosci. Technol. 23(25). doi:10.1063/1.3574091
  • K. Chen and H. D. Robinson, “Robust dithiocarbamate-anchored amine functionalization of Au nanoparticles, J. Nanopart. Res. 13, 751-61 (2011). doi:10.1007/s11051-010-0075-3
  • K. Chen, S. V. Stoianov, J. Bangerter, and H. D. Robinson, �Restricted meniscus convective self-assembly,� J. Colloid Interface Sci. 344, 315-320 (2010). doi:10.1016/j.jcis.2010.01.010
  • K. Chen, C. Durak, A. Garg, C. Brands, R. M. Davis, J. R. Heflin, and H. D. Robinson, �Interface effects in plasmon-enhanced second-harmonic generation from self-assembled multilayer films,� J. Opt. Soc. Am. B 27, 92-98 (2010). doi:10.1364/JOSAB.27.000092
  • K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, "Plasmon Enhanced Second-harmonic Generation from Ionically Self-assembled Multilayers Film," Nano Lett. 7, 254 (2007). doi:10.1021/nl062090x
  • D. S. Rao, T. Szkopek, H. D. Robinson, E. Yablonovitch, and H.-W. Jiang, "Single photo-electron trapping, storage, and detection in a one-electron quantum dot," J. Appl. Phys. 98, 114507 (2005). Selected for Vir. J. Nanosci. Technol. 12(26). doi:10.1063/1.2134888
  • R. E. Caflisch, M. F. Gyure, H. D. Robinson, and E. Yablonovitch, "Modeling, design, and optimization of a solid state electron spin qubit," SIAM J. Appl. Math. 65, 1285 (2005). doi:10.1137/040606181
  • E. Yablonovitch, H. W. Jiang, H. Kosaka, H. D. Robinson, D. S. Rao, and T. Szkopek, "Optoelectronic quantum telecommunications based on spins in semiconductors," Proc. IEEE 91, 761 (2003). doi:10.1109/JPROC.2003.811799
  • H. Kosaka, D. S. Rao, H. D. Robinson, P. Bandaru, K. Makita, and E. Yablonovitch, "Single photoelectron trapping, storage, and detection in a field effect transistor," Phys. Rev. B 67, 045104 (2003). Selected for Vir. J. Nanosci. Technol. 7(4). doi:10.1103/PhysRevB.67.045104
  • H. T. Johnson, R. Bose, H. D. Robinson, and B. B. Goldberg, "Simulation evidence for lateral excitation transfer in a self-assembled quantum-dot array," Appl. Phys. Lett. 82, 3382 (2003). Selected for Vir. J. Nanosci. Technol. 7(21). doi:10.1063/1.1575509
  • H. T. Johnson, R. Bose, B. B. Goldberg, and H. D. Robinson, "Effects of externally applied stress on the properties of quantum dot nanostructures," Int. J. Multiscale Comp. Eng. 1, 33 (2003). doi:10.1615/IntJMultCompEng.v1.i1
  • F. A. Baron, A. A. Kiselev, H. D. Robinson, K. W. Kim, K. L. Wang, and E. Yablonovitch, "Manipulating the L-valley electron g factor in Si-Ge heterostructures," Phys. Rev. B 68, 195306 (2003). Selected for Vir. J. Nanosci. Technol. 8(20). 10.1103/PhysRevB.68.195306
  • H. Kosaka, D. S. Rao, H. D. Robinson, P. Bandaru, T. Sakamoto, and E. Yablonovitch, "Photoconductance quantization in a single-photon detector," Phys. Rev. B 65, 201307 (2002). Selected for Vir. J. Nanosci. Technol. 5(21). 10.1103/PhysRevB.65.201307
  • H. D. Robinson, B. B. Goldberg, and J. L. Merz, "Observation of excitation transfer among neighboring quantum dots," Phys. Rev. B 64, 075308 (2001). Selected for Vir. J. Nanosci. Technol. 4(7). doi:10.1103/PhysRevB.64.075308
  • H. D. Robinson and B. B. Goldberg, "Light-induced spectral diffusion in single self-assembled quantum dots," Phys. Rev. B 61, R5086 (2000). Selected for Vir. J. Nanosci. Technol. 1(7). doi:10.1103/PhysRevB.61.R5086
  • H. D. Robinson and B. B. Goldberg, "Interdot excitation transfer and spectral diffusion: consequences of wetting layer potential fluctuations in self-assembled quantum dots," Physica E 6, 444 (2000). doi:10.1016/S1386-9477(99)00211-8
  • H. D. Robinson, M. G. Muller, B. B. Goldberg, and J. L. Merz, "Local optical spectroscopy of self-assembled quantum dots using a near-field optical fiber probe to induce a localized strain field," Appl. Phys. Lett. 72, 2081 (1998). doi:10.1063/1.121282

Conference proceedings 

  • M. A. Mamun, D. Gu, D. Nminibapiel, H. Baumgart, H. Robinson, V. Kochergin, and A. A. Elmustafa, "Mechanical Properties of Atomic Layer Deposition Sb2Te3 Thin Films," Suppl. Proc. of TMS vol. 2, 731-737 (2012).
  • D. Gu, D. Nmimibapiel, H. Baumgart, H. Robinson, and V. Kochergin, “Atomic Layer Deposition of Antimony Telluride Thin Films Using (Me­3Si)2 with SbCl3 Precursors,” ECS Trans. 41, 255-61 (2011). doi:10.1149/1.3633675
  • V. Kochergin, L. A. Neely, S. Wi, C.-Y. Jao, and H. D. Robinson, “Aluminum nanoparticles for improved OPV devices,” Proc. SPIE 8111, 811117 (2011). doi:10.1117/12.893532
  • H. D. Robinson, O. Sneh, and V. Kochergin, “Nanostructured Telluride Films on Macroporous Silicon for high Efficiency Thermoelectric Devices”, Mater. Res. Soc. Proc. 1314, LL05-14 (2011). doi:10.1557/opl.2011.510
  • H. D. Robinson, S. V. Stoianov and J. I. Ridley, “Polyelectrolyte adhesion layers as an alternative to APTES for surface fixation of nanostructures”, ACS Preprints 241, 192-POLY (2011).
  • C.-Y. Jao, K. Chen, E. See, and H. D. Robinson, “Robust polyelectrolyte capping of silver and gold nanoparticles with dithiocarbamate anchors”, ACS Preprints 241, 172-PMSE (2011).
  • S. V. Stoianov, J. I. Ridley and H. D. Robinson, “Amine-Rich Polyelectrolyte Adhesion Layers as an Alternative to APTES for Surface Immobilization of Biomolecules and Nanostructures,” Mater. Res. Soc. Proc. 1355, JJ03-11 (2011). doi:10.1557/opl.2011.1362
  • H. D. Robinson, L. A. Neely, C.-Y. Jao, and V. Kochergin, “Enhanced absorption in organic semiconductors with embedded aluminum nanoparticles,” IEEE Photonics Conf. 2011, 863-4 (2011). doi:10.1109/PHO.2011.6110831
  • H. D. Robinson, K. Chen, S. V. Stoianov, “The Relationship between Growth Speed and Ambient Humidity in Convective Self-assembly," Mater. Res. Soc. Proc. 1273, MM01-07 (2010). doi:10.1557/PROC-1273-MM01-0
  • C. Daengngam, K. Chen, C. Durak, A. Garg, H. D. Robinson, R. M. Davis, and J. R. Heflin, "Plasmonic Enhancement of the Nonlinear Optical Response of Ionic Self-Assembled Multilayer Films," Polymeric Materials: Science and Engineering 99, 60-61 (2008).
  • H. D. Robinson, K. Chen, C. Durak, and J. R. Heflin, “Large enhancement of second order nonlinear effects in ionic self-assembled multilayer films," LEOS 2007. The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 468-469 (2007). doi:10.1109/LEOS.2007.4382482
  • B. B. Goldberg, Z. Liu, S. B. Ippolito, H. D. Robinson, and M. S. Ünlü, "Time-resolved spectroscopy of individual quantum dots," Proceedings of SPIE: Ultrafast Phenomena in Semiconductors VI (2002).
  • H. D. Robinson, B. B. Goldberg, and J. L. Merz, "Lateral coupling of self-assembled quantum dots studied by near-field spectroscopy," Mater. Res. Soc. Proc. 571, 89 (1999). doi:10.1557/PROC-571-89


  • H. D. Robinson and J. R. Heflin, “Self-assembled organic films for nonlinear optical applications and plasmonic enhancement with metallic nanoparticles,” in“Applications of Nanomaterials, v. II,” American Scientific Publishers (invited book chapter - in press).
  • H. D. Robinson, R. Montazami, C. Daengngam, Z. Zuo, D. Wang, J. Metzman, J. R. Heflin, “Optoelectronic Materials and Devices Incorporating Polyelectrolyte Multilayers,” in Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, G. Decher, J.B. Schlenoff, eds. (Wiley-VCH, Weinheim, Germany, 2012) pp. 511-537. (invited book chapter).
  • H. D. Robinson, J. R. Helfin Jr. and R. M. Davis, “Enhancement of second-order non-linear susceptibilities in organic film materials using non-centrosymmetric nanoparticles, U.S. Patent 7,772,013 (2010).
  • H. D. Robinson, “What makes a quantum computer so different (and so much faster) than a conventional computer?, Scientific American, ask the experts column (Feb 21, 2005).